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A S C H E M E  O F  F R A C T I O N A L  S T E P S  F O R  A N O N S T E A D Y  

I N T E R N A L  C O N J U G A T E  P R O B L E M  O F  H E A T  

T R A N S F E R  IN F L O W  O F  AN I N C O M P R E S S I B L E  L I Q U I D  

W I T H  V A R I A B L E  T H E R M O P H Y S I C A L  P R O P E R T I E S  

B.  E .  K e r t  UDC 536.24 

The conjugate p rob l em  of hea t  t r a n s f e r  dur ing the non s teady l a m i n a r  flow of a v i scous  i ncom-  
p r e s s i b l e  liquid at  the en t rance  sect ion of a plane,  annular ,  o r  cyl indr ical  channel o r  in a closed 
region is d i scussed .  

Fo r  the calculat ion of t rans i t ional  p r o c e s s e s  in the flow of c ryogenic  and h igh - t empe ra tu r e  liquids in 
channels ,  for  the calculat ion of t rans i t iona l  p r o c e s s e s  under  conditions of f ree  and f r e e - f o r c e d  convection in 
channels and c losed reg ions ,  etc.  it is n e c e s s a r y  to c rea te  methods for  the solution of in ternal  conjugate p r o b -  
l e m s  of hea t  exchange allowing for  the nons teadiness  and two-dimens ional i ty  of the p r o c e s s e s  of flow and hea t  
t r a n s f e r  and the t rue  t e m p e r a t u r e  dependence of the p r o p e r t i e s  of the liquid and the wall  m a t e r i a l s .  The appl i -  
cation of analyt ical  methods for  the solut ions of conjugate p rob l ems  in such a formula t ion  is difficult. An econo-  
mica l ,  convergent ,  nonl inear ,  d i f ference  scheme  which approx ima tes  the s ta ted p rob l em is suggested in the 
p r e s e n t  r epor t .  

The nonsteady two-dimens iona l  l a m i n a r  flow of a v iscous  incompress ib le  liquid in a plane,  annular ,  or  
cyl indr ica l  channel is analyzed. The v i scos i ty ,  hea t  capaci ty ,  and t h e r m a l  conductivity of the liquid depend in 
a known way on the t e m p e r a t u r e ,  the densi ty  of the walls  depends on the coordina tes ,  and the heat  capaci ty and 
t h e r m a l  conductivity depend on the coordinates  and the t empe ra tu r e .  Heat  r e l ea se  occu r s  in the channel wails  
and in the liquid. The amount of hea t  r e l e a s e d  pe r  unit t ime pe r  unit m a s s  is a known function of the coordi -  
nates  and t ime.  A m a s s  fo rce ,  which depends on the coord ina tes ,  t ime ,  and the t e m p e r a t u r e  acts  on the liquid. 
The t e m p e r a t u r e  dis t r ibut ion over  the ends and outer  su r faces  of the channel wai ls  is known and v a r i e s  with 
t ime.  The p r e s s u r e  in the channel v a r i e s  continuously and at  the exi t  it equals the p r e s s u r e  of the surrounding 
med ium,  which depends on t ime  in a known way. At the contact  su r faces  between the liquid and the walls a 
coolant is supplied,  the ra te  of inflow of which is known, while the enthalpy depends on the t e m p e r a t u r e  in a 
known way. It  is a s s um ed  that  before  the s t a r t  of the p r o c e s s  a known steady flow of liquid exis ted  in the chan-  
nel with a known t e m p e r a t u r e  dis t r ibut ion for  the liquid and the wai ls .  At the s ta r t ing  t ime some per turba t ion  
of the veloci ty  and t e m p e r a t u r e  is supplied to the en t rance ,  and heat  r e l e a se  and the inflow of coolant begin. 
The nonsteady p r o c e s s  which develops  is analyzed.  The conditions of t e m p e r a t u r e  conjugation a re  se t  up at 
the l i q u i d - w a l l  contact  su r f aces  in the f o r m  of boundary conditions of the fourth kind. To se t  up the boundary 
conditions at the exit  cut of the channel,  s impl i fy ing  assumpt ions  a re  made.  It  is a s sumed  that  the channel is 
long enough, and the coolant supply and the heat  sou rces  a re  concentra ted  in the ent rance  sec t ion ,  so that  the 
flow becomes  one-d imens iona l  nea r  the exit .  It  is a lso  a s sumed  that  the longitudinal heat  f lux, due to the heat  
conduction of the liquid, can be e s t ima ted  and ass igned in the f o r m  of a known function of t ime near  the exit .  

Leningrad Mechanical  Inst i tute.  T rans l a t ed  f r o m  Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol.34, No. 2, pp. 
344-350, F e b r u a r y ,  1977. Original  a r t i c le  submit ted  Apr i l  5, 1977. 
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Fig. I. Diagram of calculated region. 

For flow in a dosed region the conditions of attachment for the velocity and uniform conditions of conjugation 
for the temperature are set up at the liquid-wail contact surfaces. Boundary conditions with respect to the 
temperature are set upat the outer surfaces of the wails. The model of a liquid with a constant density which 
is used can also be applied to the calculation of flows of dropping liquids, as well as to problems of free and 
free-forced convection in gases, ff one assumes that only the coefficient of volumetric expansion, which en- 
ters into the expression for the mass force, depends on the temperature. 

In the case of liquid flow in a channel the problem is formulated in the following way. A diagram of the 
calculated region is shown in Fig. 1, where the designations of its parts and their boundaries are presented. 
The liquid flow is described by the Navier-Stokes equations (I) and (2) and the heat exchange by the equations 
of heat conduction and energy (3), which in accordance with [1] have the form 

0 
• (x~ uk) = O, X E f~z; 

(1) 

~ { ~ t l  + au, , - - x ~ {  aq - - f i ( x , t ,  

{ au~ . auk '~/ .s~ 2v ('r) + O x~v('r) , - - - r - ~ - , - - , , ~  , ~ =  1, 2, XEf~; 
~ x  k I Ox~ Ox, ]l x~. (9,) 

{ o~ o-~} ~ (~a(X,x) O-~)+~P, xEf~, d (X, ~) ~ + b (x ,  ,,) u~ = (3) 

where  

0, XC~2~ U Q3 d(X, T)=p~(X)ei(X, "0, XEQj, ] = 1,2,3;  b(X, x)= 

a(X, ~)--~,j(X, T), XEf~j, ] =  1, 2, 3; ~p~C2(r), XE~ 

I pj(X)ej(X, t), X C~j, ] = l ,  3; 

+\ Ox~ Oxt ] J" 
c,(X, t) ~ c 2 ( t ) .  

In Eqs .  (i), (2) and (3) the  s u m m a t i o n  is c a r r i e d  out o v e r  the r e c u r r e n t  index k; ~ = 0 in a plane channel  and 
a=  1 in an a x i s y m m e t r i e  channel .  The  conjugat ion  condi t ions  (4) and (5) and the initial condi t ions  (6) a re  se t  
up at the l i q u i d - w a l l  con tac t  s u r f a c e s :  

[xllrk = O, k = !, .2; (4) 
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[~,(X, "t)-~x~ 2 ] 'r =Qk(X,  t, ,)~---(-- l)k-'pwku~(h~u(*)--h~ + r~), (5) 

k = l ,  2; 

(X, 0) =~o (X), q (X, 0) = qo (X), X E ~ ;  �9 (X, 0) = ~o (X), X E ~. 

The assumptions made concerning the cha rac t e r  of the flow and heat  t r ans fe r  near  the channel exi t  make it 
possible to wri te  the boundary conditions in the fo rm 

u = u ,  (X ,  t), X E a~)~zNS~ ; (7)  

u~=o, au,,=o, XESt; Ox, (8) 

q (X, t) = q, (t), X m_ (x,, x2): ( x , - -  8, xz) E $4, V 8 > 0; (9) 

~ = ~ , ( X ,  t), XEOf~\S4; (lO) 

)~(~) ~ = Q(t), XES'4. (11) 
Ox i 

Because of the t empera tu re  dependence of the v iscos i ty  v and the mass  fo rce  f', the liquid flow cannot be 
calculated independently of the heat  t r an s f e r ,  and Eqs. (1)-(3) must  be solved jointly. We make the following 
assumptions:  The t empe ra tu r e  T does not go beyond the l imits  of some posit ive range; the liquid veloci ty ,  the 
spatial  der iva t ives  of the t empera tu re  and veloci ty ,  and the quantity lu2x~ e [are bounded by a constant D > 0; the 
t empera tu re -dependen t  coefficients  of the problem (1)-(11) a re  bounded in any posit ive range of t empera tu re  
variat ion.  These  assumptions make it  poss ib le ,  as in [2, 3], to reduce  the problem (1)-(11) to a problem with 
l imited nonlineari ty.  To shorten the computat ions,  we assume that these t ransformat ions  have been pe r fo rmed  
and the values of the functions v, cj ,  kj, j =1,  2, 3, do not go beyond the l imits  of a posit ive range,  while the 
functions Qi, fi ,  i = 1, 2, a re  bounded. The prob lem obtained is approximated by an economical  nonlinear  dif-  
fe rence  scheme of f ract ional  steps.  For  this we introduce a grid in the calculated region which is nonuniform 
in t ime and in the t r a n s v e r s e  coordinate and uniform lengthwise and which includes fract ional  and whole steps 
in t ime. Henceforth an index h to the designation of a function, a region,  or  its boundary means that the reduc-  
tion of the function to the grid or  to the grid analog of the region (boundary) is being considered.  We approxi-  
mate  Eqs. (1) and (2) by a di f ference scheme,  implici t  with r e sp ec t  to velocity and explici t  with r e spec t  to p r e s -  
sure ,  which coincides with those in [3, 4] fo r  constant thermophysica l  p roper t ies  of the liquid: 

I /U+, __/~ m+ T 
e _+(x~vi  );i; XEfLzhU/'~t~ U $4~; (12) 

Atm+ 1 

' ~+ ' 4 + + ) _ a ~  f x ~  
Atm+ I L 

' 4+ ' ( 1 3 )  l 4+ -T 5-" 
, 1 

- -  o6~ 2v (aT ~+ Y) v2 -k ~ /~,~ (X, t , aT ), XEfZ2h, 

where 

4++) 1-i-i - ;  
L~ ((oo, aT ~- --2 {x~- v lk ~ (v~.) o)q_~] + x 2 ~ vik ~ (v~) (oo~l} -- 

1 

- -  (x~v (aT ~+ T )  e~j)~ _ 6k (x2 v (aT ) vi~ )xj , 
L ~  

+_fl (x~v(aT~+,)v~+,~/~ ,~J ~-' (x~v(~T~+')vT~')~ } . 

(14) 
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We approx ima te  Eq. (3) by a scheme  of f rac t iona l  s teps :  

1 

~++) F + ~ _ T  ~ 
x~ d n (X, ~zT = (x~.a R (X, aT ~+ ~) X 

Atm+ x 

X ~ (T% T% ~ ) ~ . -  x~_ n (X, o~T vp [(v. 7% 

~_ • 

} 
(15) 

The initial  conditions (6) and the boundary conditions (7) and (10) a r e  approx imated  by a s imple  reduct ion to 
the gr id  if the functions ass igning  them a re  continuous. Otherwise ,  Steklov averag ings  ove r  cel ls  of the grid 
a re  used. The grid boundary conditions (16) for  the longitudinal ve loci ty  at  a f rac t ional  l a y e r  a r e  obtained by 
wr i t ing  (13) for  S~h with al lowance fo r  (8), as  in [6]. At a whole l a y e r  we approx imate  (8). The boundary con-  
dit ions (18) and (19) for  the t e m p e r a t u r e  a t  S~h a r e  obtained by approx imat ing  (11): 

2x~ ' ' 

(~'++ -~7) + ~ '  ~+~ ~( ~r~+ "~) ~+ -~ + vfx ' + ---if- v,}, (16) Atm+ ] 

- -  qs (tin) 1 .,~-v -5-. X 6 S'4h; Rrn m+ -~ ' 

+ ~ H " = - ~ -  fiR(X, t , ~ ~, 

- - 1  

~'+ '= v~l+', XES'4h; (17) 

' " (18)  ~+ +) C + ~ -  r~ ~.. -,~+ +) ~+ +) r_~++. Q (:+ %; 
X~-~P2C2R(CZT A/m+l -= ____~_ ~,2R (czT ~ (T~, x, , 

~'2h(aT~+l)T~ +1 = Q(t~+l), XES4R. (19) 

In Eqs.  (12)-(19) i = 1, 2; k = m ,  m + 1/2; m = 0, 1, 2 . . . . .  M - 1; 

l 
l, l == P l l ,  XEFhR 

8~ = ; 8 (1"~ R) -~ ; ] =  

O, 14=P O, X ~ F h h  

1 
2, i=1,  k = m ~  2 

1 
1, i=2,  k = m +  -~-  ; 

'i, k = m  

l I 1, k = m k+ -~- k + -~ 
1 ; aT ~ c~T + ( l - - a )  T k, ~E[0,1]; 

P =  2, k = r n +  2 

3 

I p~(X) e~(X, ~ + T ) ,  i =  1, 3, XEfl~h; s 

f ' ~  f urn+ 1 f.. tvm+l'~ X v(czTm+l)p2~+p2/z , /m t ~t i J + e2(X, tm . '  E~oR;. 
. i = l  . . . . .  

I 

+(v~;- ) + ~ 
\ x2 

yn+l Uixz 

v~ ~, ----- ..+1 X E F~R, U~-~, , 

is the p i ecewi se -cons t an t  f i l l - in  of th~ grid function ~0; ~xi and q~ffi a r e  the r ight  and lef t  d i f ference  quotients 
of ~0 with r e s p e c t  to the coordinate  xi; -~ is a shift  of the function one step to the lef t  along the coordinate  xi; 
~(a) is  a smooth function,  monotonic with r e s p e c t  to[a[, equal to unity at  [a[ < D and to ze ro  at  [al ->2D [2-5]. 

Fo r  the d i f ference  scheme  (12)-(19) cons t ruc ted ,  on the assumpt ion  of the exis tence  of a genera l  solution 
~ ,  q, T of the p r o b l e m  having a ce r ta in  smoo thness ,  by the methods  of [2-5] one can prove  the convergence 
of an approx imate  solution ~, R, T to the exac t  solution and obtain an e s t ima te  of the ra te  of convergence in 
an ene rgy  norm.  
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Fig. 2. P ro f i l e s  of t e m p e r a t u r e  T ,  ~ in an 
es tab l i shed  r eg ime  as a function of x2, m ,  in di f -  
f e ren t  channel c r o s s  sect ions:  solid curves)  data 
of calculat ion;  dashed curves)  data of [7]; 1) x I = 
0.0774 m;  2) 0.296; 3) 0.795;4) 3.375. 

The nonl inear  s y s t e m  of a lgebr i ac  equations (12)-(19) is solved by the i te ra t ion  method at each step in 
t ime.  In the p r o c e s s ,  the p a r a m e t e r s  of the p reced ing  i tera t ion a re  subst i tuted into the coefficients of the 
equations,  a f t e r  which each  equation is  solved by  the Monte-Car lo  method.  We note that, as  in [4], the scheme 
(12)-(19) does not requi re  the a s s ignment  of boundary conditions at  the axis of a cyl indrical  channel. 

The method p re sen ted  was r ea l i zed  in the f o r m  an an ALGOL p r o g r a m  for  a BESM-6 computer .  The p r o g r a m  
was  checked out on the example  of a calcula t ion of the s teady heat  t r a n s f e r  exchange under conditions of  mixed 
convection during a i r  flow in a ve r t i ca l  copper  pipe with i so the rma l  wal l s ,  which was studied numer ica l ly  and 
expe r imen ta l ly  in [7]. The p rob lem of achieving a g r e e m e n t  of the r e su l t s  was  se t  up by calculat ing the p roces s  
by  the re laxa t ion  method.  The T a r g  solution for  the hydrodynamic  init ial  sect ion of a cyl indrical  channel 
was  ass igned as the hydrodynamic  initial  condition. The r e su l t s  of the calculat ions for  the case  of i so thermal  
flow p rac t i ca l ly  coincided with the r e su l t s  of [7]. The r e su l t s  of the calculat ion of mixed convection a re  p r e -  
sented in Fig. 2. The d i s a g r e e m e n t  between the r e su l t s  and those in [7] is evidently explained by the fact  that 
the sma l lnes s  of the c h a r a c t e r i s t i c  t e m p e r a t u r e  drop  leads  to slow development  of the p r o c e s s  in a calculation 
by the re laxa t ion  method.  This prevented  an approximat ion  to the es tabl i shed s ta te .  Never the less ,  the 
un i form dis t r ibut ion of the wall  t e m p e r a t u r e  conf i rms  the assumpt ion  made in [7] that  the wails  of the pipe of 
the expe r imen ta l  insta l la t ion used  a r e  t he rma l ly  thin. The compiled p r o g r a m  made it poss ib le  without the 
en l i s tmen t  of ex te rna l  devices  to take 20 nodes along the length of the channel and 30 (20 in the liquid and 10 in 
the wall) along the c r o s s  section.  

u~ is the longitudinal veloci ty;  
u 2 is the t r a n s v e r s e  veloci ty;  
T is the t e m p e r a t u r e ;  
q is  the p r e s s u r e ;  
v is  the k inemat ic  v i scos i ty ;  
p is the densi ty;  
C is the hea t  capaci ty;  
X is the t h e r m a l  conductivity; 
e is the speci f ic  power  of hea t  r e l e a s e ;  
iF i s  the m a s s  fo rce ;  
h is the enthalpy; 

N O T A T I O N  
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r is the latent of vaporization; 
t is the time; 
X is the point of the plane; 
x i is the longitudinal coordinate; 
x 2 is the t ransverse  coordinate; �9 
At is the step in time; 
H is the step along xi; 
H2 is the step along x2; 
e is the parameter  of difference scheme. 

I n d i c e  

0 i s  
s i s  

m i s  
w i s  

h i s  

1. 

2. 

3. 

4. 
5. 
6. 
7. 

s 

the initial; 
the boundary; 
the number for  time point; 
the number for coolant parameters ;  
the number for grid function. 
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M E T H O D  OF 

H E A T - A N D  

P R O B L E M S  

E X T E N S I O N  OF T H E  DOMAIN OF 

M O I S T U R E  - C O N D U C T I O N  

I. Z. A k t u g a n o v  UDC536.24.02 

A method based on extension of the domain of the problem is applied to the solution of parabolic 
differential equations in heat-  and moisture-conduction problems. 

There is a well-known method for the solution of elasticity problems by extension of the domain of defini- 
tion [1, 2]. A similar  approach is possible in heat-  and moisture-conduction problems for the solution of dif- 
ferential  equations of parabolic type. 

Let it be required to determine a function T(r ,  T) continuous and defined in a closed domain D, in which 
i t  satisfies the differential equation 

OT(r, ~) =~av2T(r , ~)+(p(r,  T), (1) 
O~ 

the initial condition 

v (r) = T (r~ 0 ) ,  
(2) 

Novosibirsk Institute of Rail Transportation Engineers. Translated from Inzhenerno-Fizicheskii ,Zhur- 
nal, Vol. 34, No.2, pp. 351-356, February, 1978. Original art icle submitted February 2, 1977. 
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