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A SCHEME OF FRACTIONAL STEPS FOR A NONSTEADY
INTERNAL CONJUGATE PROBLEM OF HEAT
TRANSFER IN FLOW OF AN INCOMPRESSIBLE LIQUID
WITH VARIABLE THERMOPHYSICAL PROPERTIES

B. E. Kert UDC 536.24

The conjugate problem of heat transfer during the non steady laminar flow of a viscous incom-
pressible liquid at the entrance section of a plane, annular, or cylindrical channel or in a closed
region is discussed.

For the calculation of transitional processes in the flow of cryogenic and high-temperature liquids in
channels, for the calculation of fransitional processes under conditions of free and free—forced convection in
channels and closed regions, etc. it is necessary to create methods for the solution of internal conjugate prob-
lems of heat exchange allowing for the nonsteadiness and two-dimensionality of the processes of flow and heat
transfer and the true temperature dependence of the properties of the liquid and the wall materials, The appli-
cation of analytical methods for the solutions of conjugate problems in such a formulation is difficult. An econo-
mical, convergent, nonlinear, difference scheme which approximates the stated problem is suggested in the
present report.

The nonsteady two-dimensional laminar flow of a viscous incompressible liquid in a plane, annular, or
cylindrical channel is analyzed. The viscosity, heat capacity, and thermal conductivity of the liquid depend in
a known way on the temperature, the density of the walls depends on the coordinates, and the heat capacity and
thermal conductivity depend on the coordinates and the temperature. Heat release occurs in the channel wallg
and in the liquid. The amount of heat released per unit time per unit mass is a known function of the coordi-
nates and time. A mass force, which depends on the coordinates, time, and the temperature acts on the liquid,
The temperature distribution over the ends and outer surfaces of the channel walls is known and varies with
time. The pressure in the channel varies continuously and at the exit it equals the pressure of the surrounding
medium, which depends on time in a known way. At the contact surfaces between the liquid and the walls a
coolant is supplied, the rate of inflow of which is known, while the enthalpy depends on the temperature in a
known way. It is assumed that before the start of the process a known steady flow of liquid existed in the chan~
nel with a known temperature distribution for the liquid and the walls. At the starting time some perturbation
of the velocity and temperature is supplied to the entrance, and heat release and the inflow of coolant begin.
The nonsteady process which develops is analyzed. The conditions of temperature conjugation are set up at
the liquid—wall contact surfaces in the form of boundary conditions of the fourth kind. To set up the boundary
conditions at the exit cut of the channel, simplifying agsumptions are made. It is assumed that the channel is
long enough, and the coolant supply and the heat sources are concentrated in the entrance section, so that the
flow becomes one-dimensional near the exit. It is also assumed that the longitudinal heat flux, due to the heat
conduction of the liquid, can be estimated and assigned in the form of a known function of time near the exit.

Leningrad Mechanical Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.34, No. 2, pp.
344-350, February, 1977, Original article submitted April 5, 1977.

[\]
wl
o

0022-0841/78/3402~ 0235$07.50 ©1978 Plenum Publishing Corporation



2272777,
N,

Fig. 1, Diagram of calculated region.

For flow in a closed region the conditions of attachment for the velocity and uniform conditions of conjugation
for the temperature are set up at the liquid—wall contact surfaces. Boundary conditions with respect to the
temperature are set upat the outer surfaces of the walls. The model of a liquid with a constant density which
is used can also be applied to the calculation of flows of dropping liquids, as well as to problems of free and
free—forced convection in gases, if one assumes that only the coefficient of volumetric expansion, which en-
ters into the expression for the mass force, depends on the temperature.

In the case of liquid flow in a channel the problem is formulated in the following way. A diagram of the-
calculated region is shown in Fig. 1, where the designations of its parts and their boundaries are presented.
The liquid flow is described by the Navier —Stokes equations (1) and (2) and the heat exchange by the equations
of heat conduction and energy (3), which in accordance with [1] have the form
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In Egs. (1), (2) and {3) the summation is carried out over the recurrent index k; ¢ = 0 in a plane channel and
o= 1 in an axisymmetric channel. The conjugation conditions (4) and (56) and the initial conditions (6) are set
up at the liquid —wall contact surfaces:
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The assumptions made concerning the character of the flow and heat transfer near the channel exit make it
possible to write the boundary conditions in the form
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Because of the temperature dependence of the viscosity v and the mass force f, the liquid flow cannot be
calculated independently of the heat transfer, and Egs. (1)-(3) must be solved jointly. We make the following
assumptions: The temperature T does not go beyond the limits of some positive range; the liquid velocity, the
spatial derivatives of the temperature and velocity, and the quantity luzxz'al are bounded by a constant D > 0; the
temperature-dependent coefficients of the problem (1)-(11) are bounded in any positive range of temperature
variation. These assumptions make it possible, as in |2, 3], to reduce the problem (1)-(11) to a problem with
limited nonlinearity, To shorten the computations, we assume that these transformations have been performed
and the values of the functions v, ¢j, A, j =1, 2, 3, do not go beyond the limits of a positive range, while the
functions Qy, fj, i =1, 2, are bounded. The problem obtained is approximated by an economical nonlinear dif-
ference scheme of fractional steps. For this we introduce a grid in the calculated region which is nonuniform
in time and in the transverse coordinate and uniform lengthwise and which includes fractional and whole steps
in time. Henceforth an index h to the designation of a function, a region, or its boundary means that the reduc~-
tion of the function to the grid or to the grid analog of the region (boundary) is being considered. We approxi-
mate Egs. (1) and (2) by a difference scheme, implicit with respect to velocity and explicit with respect to pres-
sure, which coincides with those in [3, 4] for constant thermophysical properties of the liquid:
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We approximate Eq. (3) by a scheme of fractional steps:
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The initial conditions (6) and the boundary conditions (7) and (10) are approximated by a simple reduction to
the grid if the functions assigning them are continuous. Otherwise, Steklov averagings over cells of the grid
are used. The grid boundary conditions (16) for the longitudinal velocity at a fractional layer are obtained by
writing (13) for S}, with allowance for (8), as in [6]. At a whole layer we approximate (8). The boundary con-
ditions (18) and (19) for the temperature at S}, are obtained by approximating (11):
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cp is the piecewise-constant fill-in of the, grid function ¢; Px; and ¢x; are the right and left difference quotients
of ¢ with respect to the coordinate x;; ¢ is a shift of the function one step to the left along the coordinate x;;
¢(a) is a smooth function, monotonic with respect tolal, equal to unity at |a| <D and to zero at lel =2D [2-5].

For the difference scheme (12)-(19) constructed, on the assumption of the existence of a general solution
U, g, T of the problem having a certain smoothness, by the methods of [2-5] one can prove the convergence
of an approximate solution v, R, T' to the exact solution and obtain an estimate of the rate of convergence in

an energy norm.
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Fig. 2. Profiles of temperature T, °K, in an
established regime as a function of x,, m, in dif-
ferent channel cross sections: solid curves) data
of calculation; dashed curves) data of [7]; 1) x; =
0.0774 m; 2) 0.296; 3) 0.795;4) 3.375.

The nonlinear system of algebriac equations (12)~(19) is solved by the iteration method at each step in
time. In the process, the parameters of the preceding iteration are substituted into the coefficients of the
equations, after which each equation is solved by the Monte-Carlo method. We note that, as in [4], the scheme
(12)-(19) does not require the assignment of boundary conditions at the axis of a cylindrical channel.

The method presented was realized in the form an an ALGOL program for a BESM~-6 computer. The program
was checked out on the example of a calculation of the steady heat transfer exchange under conditions of mixed
convection during air flow in a vertical copper pipe with isothermal walls, which was studied numerically and
experimentally ir [7]. The problem of achieving agreement of the results was set up by calculating the process
by the relaxation method. The Targ solution for the hydrodynamic initial section of a cylindrieal channel
was assigned as the hydrodynamic initial condition, The results of the calculations for the case of isothermal
flow practically coincided with the results of [7]. The results of the calculation of mixed convection are pre-
sented in Fig. 2, The disagreement between the results and those in [7] is evidently explained by the fact that
the smallness of the characteristic temperature drop leads to slow development of the process in a calculation
by the relaxation method. This prevented an approximation tc the established state. Nevertheless, the
uniform distribution of the wall temperature confirms the assumption made in [7] that the walls of the pipe of
the experimental installation used are thermally thin. The compiled program made it possible without the
enlistment of external devices to take 20 nodes along the length of the channel and 30 (20 in the liquid and 10 in
the wall) along the cross section.

NOTATION

is the longitudinal velocity;

is the transverse velocity;

is the temperature;

is the pressure;

is the kinematic viscosity;

is the density;

is the heat capacity;

is the thermal conductivity;

is the specific power of heat release;
" is the mass force;

is the enthalpy;

e Q0 ©.Q 4 g £
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r is the latent of vaporization;

t is the time;

X is the point of the plane;

X4 is the longitudinal coordinate;

X3 is the transverse coordinate; -

At is the step in time;

H is the step along x;

H2 is the step along x,;

€ is the parameter of difference scheme.

Indices

0 is the initial;

s is the boundary;

m is the number for time point;

w is the number for coolant parameters;
h is the number for grid function.

LITERATURE CITED

1. B. S. Petukhov, Heat Transfer and Re51stance in Laminar Fluid Flow in Pipes [in Russian], Energiya,
Moscow (1967).

2. V. Ya, Rivkind and N. N. Ural'tseva, in: Problems of Mathematical Analysis [in Russ1an], Part 3, LGU
Leningrad (1972).

3. V. Ya. Rivkind, in: Proceedings of the V. A, Steklov Institute of Mathematics, Academy of Sciences of

the USSR [in Russian], Vol. 125, Nauka, Leningrad (1973).

O. A, Ladyzhenskaya and V. Ya. Rivkind, Izv. Akad. Nauk SSSR, Ser. Mat., 35, No.2 (1971),

O. A, Ladyzhenskaya, Boundary Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).

I. V. Fryazinov, Zh. Vychisl. Mat. Mat. Fiz., 4, No. 6 (1964),

B. Zeldin and F. W, Schmidt, J. Heat Transfer, Trans. ASME, 94C, No. 2, 211-223 (1972),

Se o

METHOD OF EXTENSION OF THE DOMAIN OF
HEAT~ AND MOISTURE-CONDUCTION
PROBLEMS

I. Z. Aktuganov UDC 536.24.02

A method based on extension of the domain of the problem is applied to the solution of parabolic
differential equations in heat- and moisture-conduction problems.

There is a well-known method for the solution of elasticity problems by extension of the domain of defini-
tion [1, 2]. A similar approach is possible in heat- and moisture-conduction problems for the solution of dif-
ferential equations of parabolic type.

Let it be required to determine a function T(r, T) continuous and defined in a closed domain D, in which
it satisfies the differential equation

T =ay?T(r, ©)+ () Vs 1)
dr
the initial condition

(2)
v{r)=T(r{ 0)»
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